3.11.15 \(\int \frac {x^2}{\sqrt [3]{1-x^2} (3+x^2)} \, dx\) [1015]

3.11.15.1 Optimal result
3.11.15.2 Mathematica [C] (verified)
3.11.15.3 Rubi [A] (warning: unable to verify)
3.11.15.4 Maple [F]
3.11.15.5 Fricas [F]
3.11.15.6 Sympy [F]
3.11.15.7 Maxima [F]
3.11.15.8 Giac [F]
3.11.15.9 Mupad [F(-1)]

3.11.15.1 Optimal result

Integrand size = 22, antiderivative size = 515 \[ \int \frac {x^2}{\sqrt [3]{1-x^2} \left (3+x^2\right )} \, dx=-\frac {3 x}{1-\sqrt {3}-\sqrt [3]{1-x^2}}-\frac {\sqrt {3} \arctan \left (\frac {\sqrt {3}}{x}\right )}{2\ 2^{2/3}}-\frac {\sqrt {3} \arctan \left (\frac {\sqrt {3} \left (1-\sqrt [3]{2} \sqrt [3]{1-x^2}\right )}{x}\right )}{2\ 2^{2/3}}+\frac {\text {arctanh}(x)}{2\ 2^{2/3}}-\frac {3 \text {arctanh}\left (\frac {x}{1+\sqrt [3]{2} \sqrt [3]{1-x^2}}\right )}{2\ 2^{2/3}}-\frac {3 \sqrt [4]{3} \sqrt {2+\sqrt {3}} \left (1-\sqrt [3]{1-x^2}\right ) \sqrt {\frac {1+\sqrt [3]{1-x^2}+\left (1-x^2\right )^{2/3}}{\left (1-\sqrt {3}-\sqrt [3]{1-x^2}\right )^2}} E\left (\arcsin \left (\frac {1+\sqrt {3}-\sqrt [3]{1-x^2}}{1-\sqrt {3}-\sqrt [3]{1-x^2}}\right )|-7+4 \sqrt {3}\right )}{2 x \sqrt {-\frac {1-\sqrt [3]{1-x^2}}{\left (1-\sqrt {3}-\sqrt [3]{1-x^2}\right )^2}}}+\frac {\sqrt {2} 3^{3/4} \left (1-\sqrt [3]{1-x^2}\right ) \sqrt {\frac {1+\sqrt [3]{1-x^2}+\left (1-x^2\right )^{2/3}}{\left (1-\sqrt {3}-\sqrt [3]{1-x^2}\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {1+\sqrt {3}-\sqrt [3]{1-x^2}}{1-\sqrt {3}-\sqrt [3]{1-x^2}}\right ),-7+4 \sqrt {3}\right )}{x \sqrt {-\frac {1-\sqrt [3]{1-x^2}}{\left (1-\sqrt {3}-\sqrt [3]{1-x^2}\right )^2}}} \]

output
1/4*arctanh(x)*2^(1/3)-3/4*arctanh(x/(1+2^(1/3)*(-x^2+1)^(1/3)))*2^(1/3)-3 
*x/(1-(-x^2+1)^(1/3)-3^(1/2))-1/4*arctan(3^(1/2)/x)*2^(1/3)*3^(1/2)-1/4*ar 
ctan((1-2^(1/3)*(-x^2+1)^(1/3))*3^(1/2)/x)*2^(1/3)*3^(1/2)+3^(3/4)*(1-(-x^ 
2+1)^(1/3))*EllipticF((1-(-x^2+1)^(1/3)+3^(1/2))/(1-(-x^2+1)^(1/3)-3^(1/2) 
),2*I-I*3^(1/2))*2^(1/2)*((1+(-x^2+1)^(1/3)+(-x^2+1)^(2/3))/(1-(-x^2+1)^(1 
/3)-3^(1/2))^2)^(1/2)/x/((-1+(-x^2+1)^(1/3))/(1-(-x^2+1)^(1/3)-3^(1/2))^2) 
^(1/2)-3/2*3^(1/4)*(1-(-x^2+1)^(1/3))*EllipticE((1-(-x^2+1)^(1/3)+3^(1/2)) 
/(1-(-x^2+1)^(1/3)-3^(1/2)),2*I-I*3^(1/2))*((1+(-x^2+1)^(1/3)+(-x^2+1)^(2/ 
3))/(1-(-x^2+1)^(1/3)-3^(1/2))^2)^(1/2)*(1/2*6^(1/2)+1/2*2^(1/2))/x/((-1+( 
-x^2+1)^(1/3))/(1-(-x^2+1)^(1/3)-3^(1/2))^2)^(1/2)
 
3.11.15.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 6 vs. order 4 in optimal.

Time = 3.98 (sec) , antiderivative size = 28, normalized size of antiderivative = 0.05 \[ \int \frac {x^2}{\sqrt [3]{1-x^2} \left (3+x^2\right )} \, dx=\frac {1}{9} x^3 \operatorname {AppellF1}\left (\frac {3}{2},\frac {1}{3},1,\frac {5}{2},x^2,-\frac {x^2}{3}\right ) \]

input
Integrate[x^2/((1 - x^2)^(1/3)*(3 + x^2)),x]
 
output
(x^3*AppellF1[3/2, 1/3, 1, 5/2, x^2, -1/3*x^2])/9
 
3.11.15.3 Rubi [A] (warning: unable to verify)

Time = 0.47 (sec) , antiderivative size = 568, normalized size of antiderivative = 1.10, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.273, Rules used = {385, 233, 305, 833, 760, 2418}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^2}{\sqrt [3]{1-x^2} \left (x^2+3\right )} \, dx\)

\(\Big \downarrow \) 385

\(\displaystyle \int \frac {1}{\sqrt [3]{1-x^2}}dx-3 \int \frac {1}{\sqrt [3]{1-x^2} \left (x^2+3\right )}dx\)

\(\Big \downarrow \) 233

\(\displaystyle -\frac {3 \sqrt {-x^2} \int \frac {\sqrt [3]{1-x^2}}{\sqrt {-x^2}}d\sqrt [3]{1-x^2}}{2 x}-3 \int \frac {1}{\sqrt [3]{1-x^2} \left (x^2+3\right )}dx\)

\(\Big \downarrow \) 305

\(\displaystyle -\frac {3 \sqrt {-x^2} \int \frac {\sqrt [3]{1-x^2}}{\sqrt {-x^2}}d\sqrt [3]{1-x^2}}{2 x}-3 \left (\frac {\arctan \left (\frac {\sqrt {3} \left (1-\sqrt [3]{2} \sqrt [3]{1-x^2}\right )}{x}\right )}{2\ 2^{2/3} \sqrt {3}}+\frac {\arctan \left (\frac {\sqrt {3}}{x}\right )}{2\ 2^{2/3} \sqrt {3}}+\frac {\text {arctanh}\left (\frac {x}{\sqrt [3]{2} \sqrt [3]{1-x^2}+1}\right )}{2\ 2^{2/3}}-\frac {\text {arctanh}(x)}{6\ 2^{2/3}}\right )\)

\(\Big \downarrow \) 833

\(\displaystyle -\frac {3 \sqrt {-x^2} \left (\left (1+\sqrt {3}\right ) \int \frac {1}{\sqrt {-x^2}}d\sqrt [3]{1-x^2}-\int \frac {-\sqrt [3]{1-x^2}+\sqrt {3}+1}{\sqrt {-x^2}}d\sqrt [3]{1-x^2}\right )}{2 x}-3 \left (\frac {\arctan \left (\frac {\sqrt {3} \left (1-\sqrt [3]{2} \sqrt [3]{1-x^2}\right )}{x}\right )}{2\ 2^{2/3} \sqrt {3}}+\frac {\arctan \left (\frac {\sqrt {3}}{x}\right )}{2\ 2^{2/3} \sqrt {3}}+\frac {\text {arctanh}\left (\frac {x}{\sqrt [3]{2} \sqrt [3]{1-x^2}+1}\right )}{2\ 2^{2/3}}-\frac {\text {arctanh}(x)}{6\ 2^{2/3}}\right )\)

\(\Big \downarrow \) 760

\(\displaystyle -\frac {3 \sqrt {-x^2} \left (-\int \frac {-\sqrt [3]{1-x^2}+\sqrt {3}+1}{\sqrt {-x^2}}d\sqrt [3]{1-x^2}-\frac {2 \sqrt {2-\sqrt {3}} \left (1+\sqrt {3}\right ) \left (1-\sqrt [3]{1-x^2}\right ) \sqrt {\frac {\left (1-x^2\right )^{2/3}+\sqrt [3]{1-x^2}+1}{\left (-\sqrt [3]{1-x^2}-\sqrt {3}+1\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {-\sqrt [3]{1-x^2}+\sqrt {3}+1}{-\sqrt [3]{1-x^2}-\sqrt {3}+1}\right ),-7+4 \sqrt {3}\right )}{\sqrt [4]{3} \sqrt {-x^2} \sqrt {-\frac {1-\sqrt [3]{1-x^2}}{\left (-\sqrt [3]{1-x^2}-\sqrt {3}+1\right )^2}}}\right )}{2 x}-3 \left (\frac {\arctan \left (\frac {\sqrt {3} \left (1-\sqrt [3]{2} \sqrt [3]{1-x^2}\right )}{x}\right )}{2\ 2^{2/3} \sqrt {3}}+\frac {\arctan \left (\frac {\sqrt {3}}{x}\right )}{2\ 2^{2/3} \sqrt {3}}+\frac {\text {arctanh}\left (\frac {x}{\sqrt [3]{2} \sqrt [3]{1-x^2}+1}\right )}{2\ 2^{2/3}}-\frac {\text {arctanh}(x)}{6\ 2^{2/3}}\right )\)

\(\Big \downarrow \) 2418

\(\displaystyle -\frac {3 \sqrt {-x^2} \left (-\frac {2 \sqrt {2-\sqrt {3}} \left (1+\sqrt {3}\right ) \left (1-\sqrt [3]{1-x^2}\right ) \sqrt {\frac {\left (1-x^2\right )^{2/3}+\sqrt [3]{1-x^2}+1}{\left (-\sqrt [3]{1-x^2}-\sqrt {3}+1\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {-\sqrt [3]{1-x^2}+\sqrt {3}+1}{-\sqrt [3]{1-x^2}-\sqrt {3}+1}\right ),-7+4 \sqrt {3}\right )}{\sqrt [4]{3} \sqrt {-x^2} \sqrt {-\frac {1-\sqrt [3]{1-x^2}}{\left (-\sqrt [3]{1-x^2}-\sqrt {3}+1\right )^2}}}+\frac {\sqrt [4]{3} \sqrt {2+\sqrt {3}} \left (1-\sqrt [3]{1-x^2}\right ) \sqrt {\frac {\left (1-x^2\right )^{2/3}+\sqrt [3]{1-x^2}+1}{\left (-\sqrt [3]{1-x^2}-\sqrt {3}+1\right )^2}} E\left (\arcsin \left (\frac {-\sqrt [3]{1-x^2}+\sqrt {3}+1}{-\sqrt [3]{1-x^2}-\sqrt {3}+1}\right )|-7+4 \sqrt {3}\right )}{\sqrt {-x^2} \sqrt {-\frac {1-\sqrt [3]{1-x^2}}{\left (-\sqrt [3]{1-x^2}-\sqrt {3}+1\right )^2}}}-\frac {2 \sqrt {-x^2}}{-\sqrt [3]{1-x^2}-\sqrt {3}+1}\right )}{2 x}-3 \left (\frac {\arctan \left (\frac {\sqrt {3} \left (1-\sqrt [3]{2} \sqrt [3]{1-x^2}\right )}{x}\right )}{2\ 2^{2/3} \sqrt {3}}+\frac {\arctan \left (\frac {\sqrt {3}}{x}\right )}{2\ 2^{2/3} \sqrt {3}}+\frac {\text {arctanh}\left (\frac {x}{\sqrt [3]{2} \sqrt [3]{1-x^2}+1}\right )}{2\ 2^{2/3}}-\frac {\text {arctanh}(x)}{6\ 2^{2/3}}\right )\)

input
Int[x^2/((1 - x^2)^(1/3)*(3 + x^2)),x]
 
output
-3*(ArcTan[Sqrt[3]/x]/(2*2^(2/3)*Sqrt[3]) + ArcTan[(Sqrt[3]*(1 - 2^(1/3)*( 
1 - x^2)^(1/3)))/x]/(2*2^(2/3)*Sqrt[3]) - ArcTanh[x]/(6*2^(2/3)) + ArcTanh 
[x/(1 + 2^(1/3)*(1 - x^2)^(1/3))]/(2*2^(2/3))) - (3*Sqrt[-x^2]*((-2*Sqrt[- 
x^2])/(1 - Sqrt[3] - (1 - x^2)^(1/3)) + (3^(1/4)*Sqrt[2 + Sqrt[3]]*(1 - (1 
 - x^2)^(1/3))*Sqrt[(1 + (1 - x^2)^(1/3) + (1 - x^2)^(2/3))/(1 - Sqrt[3] - 
 (1 - x^2)^(1/3))^2]*EllipticE[ArcSin[(1 + Sqrt[3] - (1 - x^2)^(1/3))/(1 - 
 Sqrt[3] - (1 - x^2)^(1/3))], -7 + 4*Sqrt[3]])/(Sqrt[-x^2]*Sqrt[-((1 - (1 
- x^2)^(1/3))/(1 - Sqrt[3] - (1 - x^2)^(1/3))^2)]) - (2*Sqrt[2 - Sqrt[3]]* 
(1 + Sqrt[3])*(1 - (1 - x^2)^(1/3))*Sqrt[(1 + (1 - x^2)^(1/3) + (1 - x^2)^ 
(2/3))/(1 - Sqrt[3] - (1 - x^2)^(1/3))^2]*EllipticF[ArcSin[(1 + Sqrt[3] - 
(1 - x^2)^(1/3))/(1 - Sqrt[3] - (1 - x^2)^(1/3))], -7 + 4*Sqrt[3]])/(3^(1/ 
4)*Sqrt[-x^2]*Sqrt[-((1 - (1 - x^2)^(1/3))/(1 - Sqrt[3] - (1 - x^2)^(1/3)) 
^2)])))/(2*x)
 

3.11.15.3.1 Defintions of rubi rules used

rule 233
Int[((a_) + (b_.)*(x_)^2)^(-1/3), x_Symbol] :> Simp[3*(Sqrt[b*x^2]/(2*b*x)) 
   Subst[Int[x/Sqrt[-a + x^3], x], x, (a + b*x^2)^(1/3)], x] /; FreeQ[{a, b 
}, x]
 

rule 305
Int[1/(((a_) + (b_.)*(x_)^2)^(1/3)*((c_) + (d_.)*(x_)^2)), x_Symbol] :> Wit 
h[{q = Rt[-b/a, 2]}, Simp[q*(ArcTan[Sqrt[3]/(q*x)]/(2*2^(2/3)*Sqrt[3]*a^(1/ 
3)*d)), x] + (Simp[q*(ArcTanh[(a^(1/3)*q*x)/(a^(1/3) + 2^(1/3)*(a + b*x^2)^ 
(1/3))]/(2*2^(2/3)*a^(1/3)*d)), x] - Simp[q*(ArcTanh[q*x]/(6*2^(2/3)*a^(1/3 
)*d)), x] + Simp[q*(ArcTan[Sqrt[3]*((a^(1/3) - 2^(1/3)*(a + b*x^2)^(1/3))/( 
a^(1/3)*q*x))]/(2*2^(2/3)*Sqrt[3]*a^(1/3)*d)), x])] /; FreeQ[{a, b, c, d}, 
x] && NeQ[b*c - a*d, 0] && EqQ[b*c + 3*a*d, 0] && NegQ[b/a]
 

rule 385
Int[(((e_.)*(x_))^(m_)*((c_) + (d_.)*(x_)^2)^(q_.))/((a_) + (b_.)*(x_)^2), 
x_Symbol] :> Simp[e^2/b   Int[(e*x)^(m - 2)*(c + d*x^2)^q, x], x] - Simp[a* 
(e^2/b)   Int[(e*x)^(m - 2)*((c + d*x^2)^q/(a + b*x^2)), x], x] /; FreeQ[{a 
, b, c, d, e, m, q}, x] && NeQ[b*c - a*d, 0] && LeQ[2, m, 3] && IntBinomial 
Q[a, b, c, d, e, m, 2, -1, q, x]
 

rule 760
Int[1/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], 
s = Denom[Rt[b/a, 3]]}, Simp[2*Sqrt[2 - Sqrt[3]]*(s + r*x)*(Sqrt[(s^2 - r*s 
*x + r^2*x^2)/((1 - Sqrt[3])*s + r*x)^2]/(3^(1/4)*r*Sqrt[a + b*x^3]*Sqrt[(- 
s)*((s + r*x)/((1 - Sqrt[3])*s + r*x)^2)]))*EllipticF[ArcSin[((1 + Sqrt[3]) 
*s + r*x)/((1 - Sqrt[3])*s + r*x)], -7 + 4*Sqrt[3]], x]] /; FreeQ[{a, b}, x 
] && NegQ[a]
 

rule 833
Int[(x_)/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3] 
], s = Denom[Rt[b/a, 3]]}, Simp[(-(1 + Sqrt[3]))*(s/r)   Int[1/Sqrt[a + b*x 
^3], x], x] + Simp[1/r   Int[((1 + Sqrt[3])*s + r*x)/Sqrt[a + b*x^3], x], x 
]] /; FreeQ[{a, b}, x] && NegQ[a]
 

rule 2418
Int[((c_) + (d_.)*(x_))/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = N 
umer[Simplify[(1 + Sqrt[3])*(d/c)]], s = Denom[Simplify[(1 + Sqrt[3])*(d/c) 
]]}, Simp[2*d*s^3*(Sqrt[a + b*x^3]/(a*r^2*((1 - Sqrt[3])*s + r*x))), x] + S 
imp[3^(1/4)*Sqrt[2 + Sqrt[3]]*d*s*(s + r*x)*(Sqrt[(s^2 - r*s*x + r^2*x^2)/( 
(1 - Sqrt[3])*s + r*x)^2]/(r^2*Sqrt[a + b*x^3]*Sqrt[(-s)*((s + r*x)/((1 - S 
qrt[3])*s + r*x)^2)]))*EllipticE[ArcSin[((1 + Sqrt[3])*s + r*x)/((1 - Sqrt[ 
3])*s + r*x)], -7 + 4*Sqrt[3]], x]] /; FreeQ[{a, b, c, d}, x] && NegQ[a] && 
 EqQ[b*c^3 - 2*(5 + 3*Sqrt[3])*a*d^3, 0]
 
3.11.15.4 Maple [F]

\[\int \frac {x^{2}}{\left (-x^{2}+1\right )^{\frac {1}{3}} \left (x^{2}+3\right )}d x\]

input
int(x^2/(-x^2+1)^(1/3)/(x^2+3),x)
 
output
int(x^2/(-x^2+1)^(1/3)/(x^2+3),x)
 
3.11.15.5 Fricas [F]

\[ \int \frac {x^2}{\sqrt [3]{1-x^2} \left (3+x^2\right )} \, dx=\int { \frac {x^{2}}{{\left (x^{2} + 3\right )} {\left (-x^{2} + 1\right )}^{\frac {1}{3}}} \,d x } \]

input
integrate(x^2/(-x^2+1)^(1/3)/(x^2+3),x, algorithm="fricas")
 
output
integral(-(-x^2 + 1)^(2/3)*x^2/(x^4 + 2*x^2 - 3), x)
 
3.11.15.6 Sympy [F]

\[ \int \frac {x^2}{\sqrt [3]{1-x^2} \left (3+x^2\right )} \, dx=\int \frac {x^{2}}{\sqrt [3]{- \left (x - 1\right ) \left (x + 1\right )} \left (x^{2} + 3\right )}\, dx \]

input
integrate(x**2/(-x**2+1)**(1/3)/(x**2+3),x)
 
output
Integral(x**2/((-(x - 1)*(x + 1))**(1/3)*(x**2 + 3)), x)
 
3.11.15.7 Maxima [F]

\[ \int \frac {x^2}{\sqrt [3]{1-x^2} \left (3+x^2\right )} \, dx=\int { \frac {x^{2}}{{\left (x^{2} + 3\right )} {\left (-x^{2} + 1\right )}^{\frac {1}{3}}} \,d x } \]

input
integrate(x^2/(-x^2+1)^(1/3)/(x^2+3),x, algorithm="maxima")
 
output
integrate(x^2/((x^2 + 3)*(-x^2 + 1)^(1/3)), x)
 
3.11.15.8 Giac [F]

\[ \int \frac {x^2}{\sqrt [3]{1-x^2} \left (3+x^2\right )} \, dx=\int { \frac {x^{2}}{{\left (x^{2} + 3\right )} {\left (-x^{2} + 1\right )}^{\frac {1}{3}}} \,d x } \]

input
integrate(x^2/(-x^2+1)^(1/3)/(x^2+3),x, algorithm="giac")
 
output
integrate(x^2/((x^2 + 3)*(-x^2 + 1)^(1/3)), x)
 
3.11.15.9 Mupad [F(-1)]

Timed out. \[ \int \frac {x^2}{\sqrt [3]{1-x^2} \left (3+x^2\right )} \, dx=\int \frac {x^2}{{\left (1-x^2\right )}^{1/3}\,\left (x^2+3\right )} \,d x \]

input
int(x^2/((1 - x^2)^(1/3)*(x^2 + 3)),x)
 
output
int(x^2/((1 - x^2)^(1/3)*(x^2 + 3)), x)